NEWS

INSTITUTIONS
THE ITALIAN MINISTER OF FOREIGN AFFAIRS, PAOLO GENTILONI, VISITS CERN, p. 2

RESEARCH
T2K: CLUES ON THE ASYMMETRY OF THE OSCILLATIONS OF NEUTRINOS AND ANTINEUTRINOS, p. 3

INSTITUTIONS
EUGENIO COCCIA ELECTED RECTOR OF GSSI, p. 4

RESEARCH
MAGNETIC MONOPOLE: FIRST RESULTS OF MOEDAL, p. 5

COMPUTING
CLOUD SOFTWARE FOR RESEARCH, p. 6

INTERVIEW p. 7
BEYOND THE EXPECTATIONS OF THE MOST POWERFUL ACCELERATOR IN THE WORLD
Interview with Nadia Pastrone, President of the National Scientific Committee 1 of INFN, which coordinates research activities in high energy physics.

FOCUS ON p. 11
PADME: IN SEARCH OF THE DARK PHOTON
INSTITUTIONS
THE ITALIAN MINISTER OF FOREIGN AFFAIRS,
PAOLO GENTILONI, VISITS CERN

On 22 August last, the Minister of Foreign Affairs and International Cooperation, Paolo Gentiloni, paid a visit to CERN in Geneva, accompanied by an Italian delegation led by Ambassador Enrico Serra and consisting of, among others, INFN President Fernando Ferroni and Vice President Antonio Masiero. In Geneva, the Minister met, among others, the Director-General Fabiola Gianotti, the head of the Department of Theoretical Physics at CERN, Gian Giudice, and the head of the international ALICE experiment, Paolo Giubellino. Afterwards, the Minister spoke with the Italian physicists and engineers engaged in the development of the LHC accelerator superconducting magnets and researchers from the ALICE, ATLAS, CMS and LHCb experimental collaborations.
RESEARCH
T2K: CLUES ON THE ASYMMETRY OF THE OScILLATIONS OF NEUTRINOS AND ANTINEUTRINOS

The T2K (Tokai to Kamioka) international collaboration, in which INFN is participating with roles of responsibility, has presented new results at the 38th International Conference on High Energy Physics (ICHEP) in Chicago, indicating with increasing clarity that oscillation phenomena are not equally likely for neutrinos and their antiparticles (anti-neutrinos). This different behaviour of neutrinos compared to antineutrinos could be the crucial ingredient to answer one of the most important issues with which contemporary physics is faced: why is the universe today dominated by matter, while we imagine that, immediately after the Big Bang, the universe was made up of equal parts of matter and antimatter. Produced at the Japan Proton Accelerator (J-PARC), the T2K beam of muon neutrinos (or antineutrinos) is sent towards the underground Super-Kamiokande detector, 295 kilometres away. During the journey, a muon neutrino can “oscillate”, turning into an electron or tau neutrino. T2K has detected that the number of muon anti-neutrinos oscillating into electron antineutrinos is lower than that of muon neutrinos oscillating into electron neutrinos. The result, still preliminary, must be supported by the results of the data acquisition phase in progress.
INSTITUTIONS

EUGENIO COCCIA ELECTED RECTOR OF GSSI

On 8 August last, the Rector of the new Gran Sasso Science Institute (GSSI) Graduate School was elected. He is Eugenio Coccia, former director of the Gran Sasso National Laboratory, from 2003 to 2009, and of GSSI in the experimental three years of the institute, established in L’Aquila in 2013 by INFN. An experimental physicist, Full Professor at the Tor Vergata University in Rome, Coccia is known for his work in astroparticle physics and, in particular, in the search for gravitational waves. He is one of the protagonists of their recent discovery and of the first direct observations of black holes. The new Rector was elected by the Provisional Academic Senate of GSSI and will begin his term after the appointment decree of the Minister of Education, University and Research, Stefania Giannini.
MoEDAL (Monopole & Exotics Detector at the LHC), the experiment dedicated to magnetic monopole research at CERN, narrows the field of investigation and sets new limits on the mass of these hypothetical particles. The result was published in the first half of August in the Journal of High Energy Physics (JHEP). The discovery of magnetic monopoles would have a tremendous impact in particle physics, astrophysics and cosmology.

Hypothesized by physicist Paul Dirac in 1931, magnetic monopoles have still not been observed by any experiment. However, although it is common experience that from a cut magnet only two smaller magnets can be obtained, with a north pole and a south pole, theory suggests that magnetism may be a property of elementary particles. And at the current collision energies of the LHC, physicists could be in a position to observe them. The presence of monopoles would be revealed by their magnetic charge and by their enormous ionizing power. The study published is based on the analysis of the data acquired during the first run of the LHC, when part of the detection system, the trapping detector, was at the prototype stage. At the moment, the MoEDAL collaboration is actively engaged in analysing the data acquired from the detector in its final configuration.
INDIGO–DataCloud, the project funded within the scope of the European Horizon 2020 programme of the European Commission and coordinated at the continental level by the National Institute for Nuclear Physics (INFN), in mid-August reached an important milestone: the release of the first version of Cloud software platform for scientific research. Called Midnight Blue, the platform is open source, flexible and free-of-charge and capable of operating on both public as well as private Cloud infrastructures. The goal is to provide the European scientific community with tools to do research more effectively. A platform able to respond at the same time to the calculation, processing and data storage needs of researchers from very different disciplines, without having to rewrite the software from scratch each time, through the common use of advanced functionalities provided by the INDIGO platform.

Taking part in the INDIGO–DataCloud project are 26 public and private partners from 11 different European countries. Funded with 11 million Euros, it was officially launched in April 2015 and will last for 30 months. Scheduled for the coming months is the release of a second version of the software, expected in the spring of 2017, thanks to the collaboration of data processing centres in and outside Italy and with multidisciplinary research teams.
Many of the new LHC results presented at ICHEP emerge from the analysis of the data collected during the last months of this first half of 2016. Which are the main ones?

The experiments at the LHC, thanks to the extraordinary performance of the accelerator at the highest energy ever achieved in a laboratory, from May to date have recorded and analysed a huge amount of data. With the exploration of the new 13 TeV frontier, increasingly precise measurements of the processes envisaged by the Standard Model (SM) are made and the anomalies that could show indirect signs of the presence of new physical phenomena are studied. The search for the
direct production of new particles, envisaged by exotic Beyond the Standard Model (BSM) physical theories, continues with increasingly high sensitivity, thanks to new and increasingly sophisticated experimental apparatus and new computing and analysis strategies.

The Higgs boson with mass of 125 GeV, discovered in 2012, has now been re-observed and measured by ATLAS and CMS at 13 TeV in the processes of decay into two photons and into four leptons with greater statistical significance (approx. 10 sigma, well beyond the observation threshold which is set at 5 sigma). Rare decays and couplings that require higher energy and data quantities still need to be explored in order to be able to identify signs of new physics or study other particles. In particular, the search for the rare process in which a top quark emits or absorbs a Higgs boson (ttH production) could soon provide new information on the Higgs mechanism and on its interaction. There have also been many measurements confirming the theoretical predictions of the Standard Model, such as the collision cross sections of WW and WZ boson production. It is important to remember that the LHC is a factory of top quarks, whose production and decays are studied in detail.

The LHCb experiment has provided many new results on flavour physics (the defining characteristic of the different quark and lepton families). Worthy of note is the discovery of the decay of the neutral B meson into two kaons, the rarest ever observed decay of the B meson into a final hadron state. CP violation, the phenomenon which explains the prevalence in nature of matter over antimatter, is also studied with extreme precision. LHCb, due to the characteristics of its experimental apparatus, is studying the production of new processes that might soon reveal anomalies with respect to current theoretical predictions.

The amount of data collected by the LHC in recent months has exceeded 5 times that of the whole of 2015. Did you expect this performance right from the beginning of the new data acquisition phase, RUN2?

The largest accelerator in the world has exceeded all expectations, reaching the design performance and then exceeding it by 20%. In June, in fact, the LHC recorded its last brightness record, exceeding the design value: 2,000 packets of accelerated protons per beam, the machine can now produce more than one billion collisions per second.

The production of data has put a strain on the experiments and on the available computing power that have had to record, calibrate, reconstruct and analyse 50 petabytes of data accumulated since the beginning of the year.

Also discussed was the so-called "excess of events" at the mass of 750 GeV which appeared in the first data at 13 TeV in 2015, which proved to be a statistical fluctuation, rather than the sign of a new particle ...

In the first data collected at 13 TeV by ATLAS and CMS in 2015, both experiments observed an excess of events (also called "bump") of moderate statistical significance of photon pairs that could have
been the first clue to the presence of a resonance with mass of approx. 750 GeV. The excitement in the scientific community in the first few months of 2016 triggered debate among theorists who wrote over 400 articles and experimenters ready to analyse the new data that could have confirmed a truly "new" result. The 2016 data demonstrated that it was a statistical fluctuation. As in other cases, the direct search for new particles leads to the identification of excesses that must be studied carefully, verified with further data and confirmed by both experiments, before being able to declare a "discovery".

So LHC is exploring a new territory of high energy physics. Which New Physics scenarios could it open up?

LHC has collected only a tenth of the planned data at energies of 13-14 TeV, which will be produced before making any substantial changes to the machine, in 2024-25. There are still approx. two months of proton-proton collision data acquisition in 2016, which will precede proton-lead collision data acquisition before the stop at the end of the year. The experimental research covers a broad spectrum of measurements, which include the search for heavy particles envisaged by Supersymmetry (SUSY) and various exotic theoretical models. It is up to the acumen of the experimenters to find clues in a territory still to be explored and above all see with new eyes the unexpected, maintaining rigour on data acquisition, selection and analysis in order to continue to produce the highest quality results.

What can LHC tell us about dark matter, the origins of the universe or the very nature of matter immediately after the Big Bang?

One of the major challenges, not only for accelerator physics, today concerns the discovery of the nature of dark matter, the existence of which can only be seen by its gravitational effects on visible matter in the cosmos. The matter we know and "see" and which all the stars and galaxies are made of corresponds to 5% of the entire mass of the Universe. Dark matter seems to be more abundant than visible matter by a factor of 6; that is, it would seem to constitute approx. a quarter of the entire matter in the Universe. So what is dark matter? Many theoretical models predict dark matter particles with sufficiently low mass to be able to be created with the energy of the LHC. Not interacting with "visible" matter, it is expected that these particles will not leave any trace of their passage in the experimental apparatus, other than the sign of a shortfall in the total energy and pulse count. So a "sign" of "missing" energy (pulse) could provide the experimental evidence needed to prove one of the theories that envisages BSM physics, such as supersymmetry or extra dimensions. Moreover, important clues can be gathered from the four main LHC experiments on the nature of the state of matter immediately after the Big Bang. All four experiments presented new results on the collisions of heavy ions, which allow the plasma properties of quarks and gluons, existing a few millionths of a second after the Big Bang, to be measured. The ALICE experiment, which studies in detail how nuclear forces are modified in this primordial state of matter, has measured the viscosity
of the plasma with respect to the new energy. A behaviour similar to that at lower energy is observed: this means that the plasma is an ideal, homogeneous and zero-viscosity liquid.

LHC has just started its new scientific research adventure at the record energy of 13 TeV. Meanwhile, high-energy physicists are already looking beyond this. What is the future of the CERN super-accelerator in Geneva?

Accelerators such as the LHC, in which hadrons (lead protons or ions) collide, are "discovery" machines. They explore increasingly high energies where particles of increasing mass can form according to the well-known equation \(E=mc^2 \). The processes involved are typically rare and therefore require huge statistics: this justifies projects to increase the brightness of the accelerator. CERN has approved the high brightness phase of LHC, HiLumi LHC (HL-LHC), which it is scheduled to begin in 2026 to further increase the data acquired by 2035 by a factor of 10. For this phase, new generation superconducting magnets are being developed in order to optimise the collision areas. This technology will be essential for future accelerators and will allow magnetic fields of 16 Tesla to be achieved.

But if we want to carefully study the characteristics of these new rare particles, machines that accelerate high intensity electrons and positrons are more effective. The new accelerators that have for some time now been stimulating the discussions of the high energy physicist community belong to these two categories. Current technology would allow us to build a linear or circular electron-positron accelerator to reach energies allowing all the physics of the Higgs boson or of any particle discovered at TeV masses in the LHC to be studied in detail. A 100 TeV hadron machine, with current technology, would require a 100 km circumference ring and a considerable international financial contribution.

Acceleration with plasma, to which Italy is making a major contribution, is not yet ready for comparison with the LHC achievements. A new and stimulating road for the technological challenges involved is the possibility of building a collider with muon beams: could this be the right road?
INFN recently gave the green light to PADME (Positron Annihilation into Dark Matter Experiment), that represents one of the most important results of What Next, the scientific review programme promoted in the INFN community to identify the most promising experiments and research fields on which to focus in the near future. PADME is dedicated to the search for the dark photon, a hypothetical particle similar to the electromagnetic wave photon but with a small mass, predicted by a number of recent theoretical models that describe dark matter. The experiment will be the result of an international collaboration already involving researchers from the MTA Atomki institute in Debrecen, Hungary, and from the University of Sofia, Bulgaria. The Ministry of Foreign Affairs and International Cooperation has also funded a project to start a collaboration with the American physicists, in particular with Cornell University.

The study of dark matter is one of the most fascinating frontiers of fundamental physics research. It is estimated that this unknown matter represents approx. 80% of all matter in the universe and 27% of the universe as a whole. Physicists understand neither what it is made of nor why, despite being so abundant at the cosmic level, its direct interactions with our ordinary matter have not yet been detected. The only certainty about its nature is that dark matter is made of something different from the particles that make up ordinary matter, such as protons, neutrons or electrons. One hypothesis, that on which the PADME experiment is based, is that dark matter is sensitive to a new type of force that is not one of the four fundamental forces that we know, i.e. gravitational, electromagnetic, strong nuclear and weak nuclear forces. This new force, as for the other four, is associated with a "messenger", in this case a photon, with properties similar to the ordinary photon but characterised by the fact of having a small mass. Physicists have called this hypothetical "messenger" the "dark photon". Thanks to its mass and its abundance in the universe, the dark photon could represent all or most of the dark matter. PADME could for the first time reveal the existence of this new force, thanks to a small but
extremely accurate measurement apparatus, able to observe the production of dark photons in collisions of electrons and anti-electrons (positrons). The experiment will enter into operation in the INFN Frascati National Laboratories (LNF) in a new experimental room of the linear accelerator test structure, the Beam Test Facility (BTF), and will be built around a calorimeter consisting of approx. 600 inorganic scintillating crystals. The positrons, coming from the accelerator, will reach a diamond target and, interacting with the atomic electrons, could produce dark photons together with a visible photon. In order to function, the experiment needs a magnetic field developed by a reserve magnet created at CERN and sent to the LNF to be used in the PADME experiment. The PADME calorimeter will provide an accurate measurement of the characteristics of the visible photon from which it is possible to extract valuable information on the existence and mass of the dark photon. The PADME target and calorimeter are the result of innovative technologies developed in cooperation between industrial partners and the research world. The PADME target is a polycrystalline artificial diamond membrane, one tenth of a millimetre thick, and constitutes an innovative device with detector function. It was developed by industrial partners in close collaboration with the INFN laboratories. The collaboration of INFN researchers with matter physicists has also led to the development of a new technique for electrode construction based on irradiation of the diamond surface with laser light to produce conductive graphite strips. The calorimeter is the result of a technology created for particle physics, which then became widespread, due to its characteristics of granularity, high efficiency and density, in the field of medical imaging, such as PET (Positron Emission Tomography).
ITALIAN NATIONAL INSTITUTE FOR NUCLEAR PHYSICS

EDITORIAL BOARD
Coordination: Francesca Scianitti
Project and contents: Eleonora Cossi, Francesca Scianitti, Antonella Varaschin.
Graphic design: Francesca Cuicchio

CONTACTS
Communications Office
comunicazione@presid.infn.it
+ 39 06 6868162

cover image:
Participants to the ICHEP 2016 Conference
Photo by Reidar Hahn