Sfruttare il Large Hadron Collider del CERN come sorgente per lo studio di neutrini, particelle elementari caratterizzate da una scarsissima interazione con la materia, emessi a seguito delle collisioni tra protoni all’interno del super acceleratore. Questo l’obiettivo della collaborazione internazionale SND@LHC, che vede un fondamentale contributo dell’INFN, Istituto Nazionale di Fisica Nucleare. Dopo aver portato a termine la realizzazione del proprio apparato sperimentale nel marzo dello scorso anno, le ricercatrici e i ricercatori di SND@LHC, insieme ai colleghi della collaborazione FASER, altro esperimento al CERN che studia neutrini, hanno pubblicato ieri, mercoledì 19 luglio, sulla rivista Physical Review Letters, i primi risultati dell’analisi dei dati acquisiti nel corso del 2022, da cui emerge la prima osservazione di neutrini muonici di alta energia prodotti da LHC. Oltre ad aprire una nuova finestra utile a indagare le proprietà dei neutrini, la misura, la prima del suo genere, rappresenta un’importante successo tecnologico, confermando la capacità del sistema di rivelazione adottato da SND@LHC di individuare particelle tanto elusive. Al risultato, indicato come “editors’s suggestions” da Physical Review Letters, è stato dedicato anche un “Viewpoint article” nel Physics Magazine della Società Americana di Fisica.
Approvato nel marzo del 2021, l’esperimento Scattering and Neutrino Detector (SND@LHC) è stato installato a 480 metri dall’esperimento ATLAS in un in un tunnel in disuso che collega LHC all’SPS e ha come scopo l’individuazione e lo studio dell’elevato numero di neutrini di tutti e tre i sapori (elettronico, muonico e tauonico) che un collisore come LHC è in grado di produrre, finora sfuggiti a un’osservazione diretta a causa della loro bassa probabilità di interazione e della loro traiettoria parallela all’asse di collisione, che rende questi neutrini ‘invisibili’ agli altri esperimenti di LHC.
“Gli esperimenti a LHC hanno sinora associato la presenza di neutrini alla rivelazione di energia mancante nella ricostruzione dei prodotti delle interazioni”, spiega Giovanni De Lellis, responsabile internazionale della collaborazione SND@LHC e ricercatore INFN e Professore all’Università “Federico II”. “SND@LHC è stato progettato con l’obiettivo di rivelare queste particelle, di grande interesse per la fisica in quanto caratterizzate da energie molto elevate e non ancora esplorate, estendendo il potenziale scientifico degli altri esperimenti di LHC”.
SND@LHC presenta dimensioni ridotte rispetto alle altre tipologie di esperimenti dedicati allo studio dei neutrini attualmente in corso. Esso è costituito da due regioni. In quella più a monte ci sono lastre di tungsteno, per un peso complessivo di circa 800 kg, intervallate da film di emulsioni nucleari, in grado rivelare con estrema precisione l’interazione dei neutrini, e da sistemi traccianti elettronici basati su fibre scintillanti per la misura dell’instante in cui avvengono gli eventi di interazione e della loro energia elettromagnetica. La regione finale dell’esperimento è invece dotata di calorimetro adronico e un sistema di riconoscimento dei muoni.
“Il motivo che ha consentito la realizzazione di un apparato sperimentale di dimensioni contenute è legato all’elevato numero di collisioni di LHC, che si traducono in un altrettanto elevato flusso di neutrini nella direzione in avanti. L’ingente numero di neutrini, insieme alle loro alte energie, alla cui crescita corrisponde una maggiore probabilità di interazione, rendono possibile la loro rivelazione anche con apparati più compatti di quelli oggi impiegati nell’indagine sui neutrini grazie anche alla relativa vicinanza dell’apparato alla sorgente”, prosegue Giovanni De Lellis
Grazie alle sue caratteristiche, SND@LHC è stato in grado di discriminare i soli eventi dovuti all’interazione tra l’apparato sperimentale e i neutrini prodotti dall’acceleratore nel campione di dati acquisiti nel 2022, costituito da diversi miliardi di muoni. SND@LHC ha osservato 8 eventi candidati interazioni di neutrino muonico, con una significatività statistica superiore a quella necessaria in fisica per confermare un’osservazione.
"Con questi primi risultati dell’analisi dei dati raccolti nel 2022, l'esperimento SND@LHC ha aperto una nuova frontiera nello studio dei neutrini e nella ricerca di materia oscura”, illustra Giovanni De Lellis. “Abbiamo osservato neutrini dal collider con una significatività superiore alle 5 sigma. Alla luce del fatto che una buona parte dei neutrini è originata dai decadimenti di quark pesanti, essi costituiscono un modo unico per studiare la produzione di questi quark, inaccessibile ad altri esperimenti. Queste misure sono anche rilevanti per predire il flusso di neutrini di altissime energie prodotti nei raggi cosmici, sicché l’esperimento fa da ponte tra la fisica degli acceleratori e quella delle astroparticelle".
L’Istituto Nazionale di Fisica Nucleare svolge un ruolo centrale all’interno della collaborazione con i gruppi delle Università e dell’INFN di Bari, Bologna e Napoli. L’INFN ha infatti costruito il bersaglio dei neutrini e il sistema di identificazione dei muoni, ed è attualmente responsabile dell’analisi dati.
“Questo risultato apre una nuova era, quella della fisica dei neutrini da collisionatore, un nuovo filone di ricerca che l’INFN, sulla base delle proprie riconosciute competenze in questo settore di ricerca, ha contribuito a inaugurare. Questo è il primo risultato: l’indagine proseguirà con lo studio di neutrini muonici a più alta statistica e con la rivelazione di neutrini elettronici e del tau, nonché con la ricerca di materia oscura, grazie alle caratteristiche uniche dell’apparato sperimentale”, conclude De Lellis.
Per leggere l’approfondimento di Physics Magazine:
https://physics.aps.org/articles/v16/113
Per conclultare l'articolo di PRL:
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.031802